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1.  Introduction 

Knuth, [II], Dixon, [6] and [7], and Hellbronn, [8], have recently 

investigated in considerable depth the average number of divisions performed 

in the Euclidean algorithm for integers. Although many interesting questions 

remain unanswered, the relatively elementary result of Dixon in [7] already 

suffices to completely determine the average computing time of the Euclidean 

algorithm to within a constant factor, which factor is in any case dependent 

on the particular computer Mcd and inessential details of the implementation. 

Such a determination of the average computing time of the Euclidean algorithm 

is the main result of the present paper. The maximum and minimum computing 

times of the Euclidean algorithm for integers will also be derived since, 

although their determination is quite elementary, they have apparently not 

previously been published. These computing times are all derived as functions 

of three variables, namely the lengths of the two inputs and the length of the 

resulting g.c.d. (greatest comnon divisor).  Previous results on the computing 

time of the Euclidean algorithm ([2] and [11], Section h.^,2,   Exercise 50) have 

been limited to upper bounds on the maximum computing time. 

 —— - ^MMM 
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2.  Dominance and Codcrolnance 

The reUtlon» of dominance and codominance between real-valued function« 

were introduced in [5], where they were used in the analysis of the computing 

time of an algorithm for polynomial resultant calculation. The related concepts 

and notation have subsequently been adopted by several authors, for example. 

Brown, [1], Heindel, [9]. and Musser. [12]. The definitions and some funda- 

mental properties will be repeated here since they will not yet be familiar to 

many readers. 

If f and g are real-valued functions defined on a conmon domain S we say 

that f is dominated b^ g, and write f A g, in case there is a positive real 

number c sich that f(x)< c.g(x) for all x S. We may also say that g dominates 

f, and write g > f. Dominance is clearly a reflexive and transitive relation. 

It Is Important to note that the definition is not restricted to functions of 

one variable since the elements of S may be n-tuples. 

Knuth ([10], pp. 10U-106) defines f(x)-0(g(x)) in case there is a positive 

constant c such that |f(x)|< c.|g(x)|. As long as one is dealing only with non- 

negative valued functions, this formally coincides with the definition above of 

f ^ g. Although Knuth implies that this definition is applicable only when f 

and g are functions of one varit-Sle, he in fact uses it for functions of more 

than one variable (e.g. [II], p. 388) in a manner which is consistent with our 

definition.  Thus dominance is apparently a new notation and terminology but 

not a new concept.  Although Knuth discussed at length the logical weaknesses 

of the 0-notation, he chose not to abandon it in favor of the more natural 

notation cf an order relation. 

If f < g and g A f then we say that f and g are codominant, and write 

fwg.  Codominance is clearly an equivalence relation.  If f •< g but not g ^ f 

then we say that f is strictly dominated b^ g, and write M g. We may also 
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say  that  g strictly dominates  f,  and write g >f.     Strict dominance  is 

clearly  irreflexive and  transitive.    Whereas   the O-notation has  no counter- 

parts   for  the  codominance and  strict  dominance   relations,   it will  become 

apparent   that  these are  important concepts  in algorithm computing time analyses. 

Furthermore,  the O-notation has a  somewhat different meaning in asymptotic «- 

nalysis  than the  one used by Knuth  (see,  e.g.,   [5])« 

If  f and  g are   functions defined  on S and  S.   is a  subset  of S,   it will 

often be convenient  to write  i -£ g on S.   in case   f.  ^ g, . where  f.   and  g    are 

the  functions  f and  g restricted  to S. .    Also,   if SC S.x.-.xS  ,  a Cartesian  prod- 

uct, we will denote by  f    the  function  f restricted  to  ({a} fiS^x. . .xS  )nS;   that   is, 

f  (xp,...,x  )-f(a,x?,... ,x )   for (a.x-,...,x  )£ S .     Similarly we may  fix any 

other of the n variables  of f. 

Dominance  and  codominance have  the  following   fundamental  properties,  most 

of which were   listed  by Musser in f 12] . 

Theorem 1.     Let   f,   f.,   fp,  g,  g,   and gp  be  non-negative  real valued  functions 

on S,  and  let  c  be a  positive real  number.    Then 

(i 

(b 

(c 

(d 

(•■ 

{i 

(| 

frJcf 

If  f1 ^ g1 and  f2i g2,   then fj+f^ g1-*-g2 and  f^   f^ g^  g2. 

If  ^ < g and  f2 < g,  then  f^ -< g. 

max(f,g)^f+g. 

If 1 •<   f and  1 < g,  then  f+g < f-g. 

If  1 ■<   f,   then f^f+c. 

Let S£ S.x. . .xS    and a fc S. .     If f 4 g,   then  f   •< ga- 

Let  S«S   Ü Sp.     If  f / g on S,   and   f ■<   g  on S2,   then  f ^ g  on S. 

Proof.     These  properties   follow  iimediately   from the definition,   except 

for  (e).    To prove  (e),  assume  1 ^ f and  1 ^ g so  that,   for some positive real 

number c,  cf > 2  and  eg > 2.    We  then have  (cf-2) (cg-2)> 0,  so 

c2fg^> 2c(f+g)   > c(f+g)-H4.    Hence c2fg> c(f+g),   cfg> f+g and  f+g ■< fg. f 

5 
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5.    Computing Time  Functions 

Let A be any  algorithm and  let S be the set  of all valid inputs  to A 

(the elements  of S may be n-cuples).    We associate with A a computing time 

^unction t.   defined  on S,  t  (x)  being thj number  of basic operations  per- 
A A 

formed by the algorithm A when presented with ehe Input x,  a positive  in- 

teger.    This assumes  that the algorithm is unambiguously specified  in terms 

of some  finite set  of basic operations.     Changing  the set  of bf.sic  operations 

(as  in reprogramming  the algorithm  for a different computer) will result  in 

changing the computing time  function tA.    Alternatively, we could  take  the 

view that  this represents a change  in the algorithm.     However,   if Z^ and  B^ 

are  two sets  of basic  operations such that each  operation in B1  can be per- 

formed by a  fixed  sequence of operations  in B2,  and vice versa,   then  the com- 

puting time  functions associated with B.   and B2  for any algorithm A are  co- 

dominant,  and we will concern ourselves  only with  the codominance  equivalence 

class  of t   .    Thus  the choice of basic  operations  is  somewhat arbitrary.    We 
A 

assume a choice which is consistent with any of  the  existing,  or conceivable, 

random access digital  computers but,   in order  to avoid the triviality of 

finiteness, with a memory which is  indefinitely  expandable. 

The  function t.   is  t^equently  too complex to be of interest  for direct 

study.     Instead, we  ordinarily decompose S  into a disjoint union S  ■ u
n=isn' 

where  each S    is a  non-empty  finite  set,  S being a denumerable  set.     The choice 
n 

of decomposition  is made on the basis  of some prior knowledge or  some conjecture 

about  the general  behavior of t..     Relative  to a decomposition Ä5={S1 ,S2,S,.. .} 

+ 
of S we define maximum, minimum and average computing time  functions,   tA,   tA and 

t.   onQr  as  follows,  where  JS  |   denotes the number  of elements of S^. 

tX^^s'AW' (1) 
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(5) 

As illustration, and in preparation for our analysis of the Euclidean 

algorithm, let us consider the computing times of the classical algorithms 

for arithmetic operations, that is, addition, subtraction, multiplication 

and division, of arbitrarily large integers. We assume that all integers are 

represented in radix form relative to an integral base ^2 , as discussed by 

Knuth in [11], Section U.J- We know that the computing times of these al- 

gorithms depend on the lengths of the inputs. 

Following Musser, [12], we denote by L (a) the p-length of the integer a, 

that is, the number of digits in the radix form of a relative to the base p. 

If fxl is the ceiling function of x, the least integer greater than or equal 

to x, we have 

L (aHlogQ(|al+l)l, (k) 

for a^O, and we define L (0)"1. 
B 

In most contexts the base ß is fixed and we write simply L(a) for the 

length of a. The omission of the subscript is further justified by the ob- 

servation that, Y being any other base, we have 

I  Y 
(5) 

where L and L are functions defined on the set I of all integers.  In fact, 
0     Y 

we can use the definition {k)  when a is any real number and we then have 

L (•)«•!■(|«|-«) on R, (6) 

where In is the natural logarithm and R is the set of all real nucbers, and 

(6) clearly Implies (5)- Ihe length function also has the following easily 

verified fundamental properties: 

L_ Mi A 
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I the set of integers, 

L(«b)'>*L(a)+L(b) for a,b< I-{0}, (8) 

L([a/b])^L(a)-L(b)+l for a.b « I and |a|>|b|X).      (9) 

We will also need the following theorem. 

—, n 

Theorem 2.  (a) tCflJ.j«^ ^^^^(«i) for ai V I' ^  L^TTi-lai^ 

^".^(a^ for a1 ant I-f-1,0,1). 

Proof. L(ab)< L(a)+L(b) for a,b<I, so MTl^a^ 2_ "^(a^ by induc- 

tion on n, proving (a).  To prove (b), assune first that 2<jai|<ß for 1< i < n. 

Then L(nJ.l«1)> ^gBT^-1la1l-(logp2)log2T^.1lail> (logp2)log22
n=(logp2)n-(logp2) 

^J.^), so^^LCa^^ (lO^rtLCflJ.^). 

Next, assume L (ai)> 2 for l<i^i, and let i^L (a^ . Then L(TT^atlai)>log 

(<=lN) > ^^i^'^I^V1) ^^i'i72' soIi=i L(ai) ^i'SJ 
Combining these two cases, we may assume L(a )=1 for l<i < m and L(a )> 2 

for m+l< i < n. Then ^ "^(a^ (log2ß)L(T/
n
i_1ai) + 2L(TT^s.^+1a1)< 2(log2p) 

{L(T^=1a1)+L(TTj=m+1ai)}<li(log2p)L(T^mlai)  since L(a)+L(b)< 2L(ab) for 

a,b€ X-(0).| 

It should be noticed that a simple inductive proof of (b) was not 

possible because n is regarded as a variable, not as an arbitrary but fixed 

positive integer. As an immediate corollary of Theorem 2, we have 

L(ab)~bL(a) for a,b« I, |a|> 2 and b> 0. (10) 

If A, M and D are the classical algorithms for addition (or subtraction), 

multiplication and division, respectively, as described in [11], Section U.J, 

then we clearly have 

 ,  ttfMMiMta ■^MMHMüiiai 
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tA(a,b)/>'L(a)+L(b)   for a,b < I-fo}, (U) 

i . 
•^(3,0)^1(3)^(0)   for a,b« I-fO), (12) 

u 

li 

tD(3,b)'vL(b) .  L([a/b]) for 3,51 1 and   |a|>|b|X).     (15) 

Thus,   for these algorithms,   the natural decomposition  of  the set 

of=f (3,b):a,b£ 1}  consists   of  the sets    S      =ffs,b) :L(a)-m4L(b)«n} .     If we 
** m, n 

+ + > _ *■ 
write t  (m.n)   in pl3ce  of  t   (S       ),  and  similarly  for  t     and  t   ,   then from 

(11),   (12)  and  (Ij),  and  using  (9),  we have 

t  (m.n)^ t   (rajn)^ t   (m,n)'vm+n, 

t^fm.n)'« C~(B(n}M tA(m,n)^mn, 

t   (m,n)^ t   (m,!!)^ t   (m,n)'-wn(m-n+l)   for in> n. 

(15) 

(16) 

Thus for these algorithms the maximum, minimum and average computing 

times all coincide. This will not be the case for the Euclidean algorithm, 

to which we now ^urn. 

^ 

-   
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k .     The Maxlnum and Minünam  Computlnp Times. 

For simplicity,  and without   loss of genetality, we will   consider  the 

following version of the Euclidean algorithm,   for w.iich the  permissible  in- 

puts are the pairs  (a,b)   of positive  Integers with a^-b.    The  output  of the 

algorithm is the positive  integer  c"gcd(a,b). 

Algorithm  E 

(1) [Initialize.]     c»-a ;  d*-b. 

(2) [Divide.]     Compute  the quotient q and  remainder  r  such  that c"dqi-r 

and 0< r < d,   using algorithm D. 

(5)   [Test  for end.]     c*-d ;   d«- r;   if d/C,  go tc  {2,. 

(h)  Return. 

This algorithm computes  two  sequences,   (a. ,a0 ,...,« .+2)  «nd   («Ip^ ^/^ 

such that a =a, a -b, a =q a with 0<a _<« ., for l< i< i, «nd a . 
'1 "•  "2 "'  "i Mi"Hl  "i+2    """" "^"1+2^1+1  '"'*   "- "- ■» ' i+2 

a. a   ..  are  the successive  values assumed by  the variable c  and q^,...^ 

ars   the successive values assumed  by the variable q.     (a.,...,a +2)   is called 

the  remainder sequence of  (a,b)   ant!   {ql q^   is called  the quotient sequence 

of  (a,b).    Steps  (2)  and  (5)   are  each executed   /  times;  this  is  the number of 

divisions performed, which we denote by D(a,b). 

By  (I3)i  the computing  time   for the  1      execution of step  (2)   is 

^Hq  )L(a      ).    The computing  time   for the  i'    execution of  step  (5)   1* 

certainly dominated by L(a     ...   since at most  it  requires copying the digits of 

a     .   and a   „3.     In an  implementation of the algorithm  in Which a  large  integer 

is  represented by  the  list  of   its digits  (e.g.   [U])   such copying  is unnecessary 

and   the computing time  for each execution of step  (5)   is ~ 1.     For  the  same 

reason, we will assume  that   the  single executions of steps   (I)   and  (1*)  have 

computing  times ^1.    We   then have 

8 
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tJ*,b) -IU MqJ-LC«^,) r^i i+i' (17) 

If Instead we were Co assume that copying is required in steps (1) and (3), 

(17) would still hold after adding L(a.) to the right hand side.  But Ua^«*" 

L(ql)4Lra2) 4  1.(^)1^), so (1?) holds in any case. 

Fro« (I?) we will derive the maximum, minimum and average computing times 

of Algorithm K, by analyzing the possible distributions of values of the a. and 

q , obtaining the codominance equivalence classes of these computing times as 

functions of L(a), L(b) and L(c). Thus we consider the decomposition of if into 

the sets 

^fn,k"C(
a'b):L(a'"m*L(b)"n*L(8cd^'b))"^ (18) 

with m>n>k>l. We may verify that each set S   , Is non-empty as follows. 
~-"~ m, n ,K 

■rr      »       ,       /  m-l m-l> , „      ,,  .  .     m-1, k»!   . . .n-1  _. If m-k, then (p  ,p  )* S   . .  If m.^k, let a-p  +p   and b-p  . Then in, n IK 

c-gcd(.i,b)-pk"1,  L(a)-m, L(b)-n and L(c)-k,  so (a,b)« S        . .    As above, we will o^n,* 

write t    (i>,n,k)   in place of tE(SB n k),  and similarly  for tg and  tg. 

Theorem ^.     t   (m,n,k) < n(m-k-H). 

Proof.    Sine? b-an> «_> •••>•..,* we h*ve by  (17)  that 

tE(a.b) iLCb^J.jLCq^. (19) 

Since L(a)'>'L(a+1)   for « > 1  and  since q    > 2 we obtain,  by Theorem 2, 

][(-lL(V'-L(<lX-l(qi+l))- (20) 

Since ai"
<ll
a
i+1

+«i+2
> ^i'i^'i+g' we have qi+l< l-i/*i+2  for 1< ' ■nd henCe 

,/-l TTi_1(q1*l)< ala2/aiai+1.     Combining this with q,"«/«,^ yields 

qiTTi-l(qi+l)  <ab/c2- (21) 

- ^^ 
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Since L(«b/c2) < L(«2/c2)^ L(«/c)-L(«)-L(c)+l,   (I9),   (20)  and  (21) 

yield 

t   (a.b) ± L(b){L(«)-L(c)+l). (22) 

from which Theorem 3 is immediate.f 

We now proceed to prove that t (m.n.k)^ n(m-k+l), for which purpose we 

need the following two theorems. 

Theorem U.  tE(a,b) ^ D(a,b)fD(a,b)+L(gcd(a,b))). 

Proof.     Let   (q^.^.q  )  and  (a.,...,a       )  be  the quotient and  remainder 

sequences of  (a,b),  c-gcd(a,b)  and  k-L(c).     By  (1?), 

tE(a,b) kJJ,^). (23) 

Since •/+2"0, a/+l"c and ai"qiai+l+ai+2 - ai+l+ai■^2, a ,lmPle induction 

f l> 
shows  that  a    __.   > cF. , where F.   is  the  i       term of  the Fibonacci  sequence, 

defied  by  ^"0,  F^l  and  Fl+2-F1+Fl+l.     But   ([10],  p.  82)   ^  Zfi*'//?, where 

0-(l+^)/2,  and ^     soFi+5>0i.     Hence   ^ ^^(a^^^ J^^S^cF^  > 

/(logBc)+2 {li   ^«g^1  > /(log c)+(/^2)(logjJ).     So  for k > 2 and  t >k, 

^^^(a^  > ifki+( 1/16) (log fi))/2 ^ k/+f2 while  for  k-1 and   t>k, 

Z i-lL(ai)  - (1/I6)(loga0)/2 > f-vU+l2.     For  i < 5, Jl [.^(«i)  > L(c)-k-k/+i2 

Zl 2 
1*1 t  k/+'  for a11 k and t>  proving the theor-m, 

since /«D(a,b). I 

Theorem 5.     For every positive   integer  n,   there exist  positive  integers 

e and   f with  e  > f,  L(e)-L(f)-n,   gcd(e,f)-l,  and D(e,f)-n. 

Proof.     Let  F^       be  the generalized  Fibonacci  sequence defined  by  F^   '«l, 

1 

■     - «— mammmm 
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and  F^h|,  F^,   ....   F,   ^-h,   F'*1^-!, 0 is  the  remainder  sequence of  (e,f)   so 
n+l      n lo 

gcd(e,f)-l and D(e,f)-n.     Hence  it  suffices  to show that   for  every n > !  there 

is an h > 1  such  that   ß"" < F^h'< V  L  < ß.     It  can be verified by calculation 
— —■    n    —      n+i. 

that   for n < 6  this holds with h-'n. 

Since  F^h'»F    ,+hF    for n > 1  (see [10],  Section  1.2.8,   Exercise  Ij)   and 
n        n-1      n — 

F -(0
n.0n)/y5 „here fy—f1'^-^)   for n > 0  (see  [10],  Section 1.2.6,   Formula 

(1U)), we have   |Fn-0n^ |-|f/y3!-( l^/0l7/5)0n-     But   |^|5<  .009.  »o 

|ff -07/51<  -005 0"  for n > 5 and hence Fn/Fn_1 < 1.005 07-995 f    < 1.0110 < 

1,6h  for n > 6. 

Assume as induction hypothesis that B""1 < »* ' < F^J < 0° with h2P> 6- 

Let k be the least positive Integer for which 6° < F^j.  Then k > h and 

^i/^^.^^iVC»«^.!)?^^ V0fO<r/6. 30 r™ < (7/6)F^1)<(7/6)Bn, 

Al80'   F!^/Fl+l-tFn+l+kFn^V{Fn+kFn+1}<maxfFn+1/Fn.Fn+2/Fn+1l  < l.GU,   so 

F^  < 1.6UF^ < (7/6)(1.6U)P
n < 2fin < B1^1.     Hence  P

n < F^J < f™ < ^ 

and k > h+1  > n+l,   completing the induction. I 

Theorem 6.     tE(m,n,k)'Vn(m-k+l). 

Proof.     By Theorem 3,   it suffices  to prove  that  tE(m,n,k)  ^ n(m-k+l). 

Using Theorem 5,  choose e and   f with e > f > 0,  L(e)-L(f)-n-k+l,  gcd(e,f)-l 

and D(e,f)-n-k+l.     Let B«f and  ä»e+qf where q  is  the  least non-negative  integer 

such that e+qf > pm'k.     If q-0 then S-e, m-n and L(l)-m-k+.l.     If q=l,   then 

m > n so ä-e+f < 2e < 2Bn"kfl < t?'**2 < pm"k+1  and L(5)-m-k+l.     If q _      then 

5-e+qf < 2e+(q-l)f < 2(e+(q-l)f)< ?pm"k < 0m'k+l   and L(ä)-m-k+l.    Also,   gcd(i,B)= 

gcd(f,e+qf)-gcd(e,f)-l and D(ä,B)-D(e,f)-n-k+l. 

Let c-ß11"1, a=äc and b-5c. Then c-gcd(a,b), L(c)-k, L(a)=m, L(b)=n and 

D(a,b)-n-k+l.  Hence by Theorem k  t|(ni,n,k) ^ (n-k+l) {(n-k+l)+k} ^n(n-k+l) . 

11 
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Also,  by  (17),   tg(m,n,k) ^ L(q1)L(a2)'«(m-n+l) (n) .     So by Theorem 1.   part   (c), 

tt(ni,n,k) ^ nCn-k+O+nCm-n+l^nCm-k+l). I 
E 

In the next   theorem we  obtain the minimum computing time of the  Euclidean 

algorithm, which  is much easier. 

Theorem 7.     t"(m,n,k)'on(m-n+l)+k^n-k+l). 

Proof.     By   (l?).   t^m.n.k)  > L(q1)L(a2)~n(m-n+l).     Since ^H^A^J we 

have \¥i>*i/*i¥i and  80 ^-l^i"*"1)   >,fT{.l(ai/ai+l^a/c-     By  (lT).   tE(a,b)^ 

^^(q^LCa^)  ^ L(c)][ J.^Wc^Mq^)   >L(c)L(a/c)  > L(c)L(b/c) ~ 

L(c){L(b)-L(c)+l}.     Hence  t^m.n.k) > k(n-k+l)  and  by Theorem 1,  Part  (c). 

t'Cm.n.k) >  n(m-n+l)+k(n-k+l). 
E 

If n-k, let a=Bm"1 and b=pn'1 so that c=pn"1 and D(a,b)-1. By (l?), this 
n-1 

shows  that  t"(m,n,k) •<  n(m-n+l) •< n(m-n+l)+k(n-k+I) 

k-l 
If n > k, let a=pm'1+pk"1 and b=en"1. so that c-p*"1, L(a)-m and D(a,b)-2. 

Then by (17), t"(m,n,k) ^ n(m-n+l)+k(n-k+l) for n > k. Application of Theorem 1, 

Part (h), concludes the proof. fl 
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5 •    Ttie Average Computing Time 

As observed   in  the  proof of Theorem k.   If a > b and  (a.,a- a       ,a       ) 

is  the remainder  sequence  of  (a,b),   then a > f        >$l//5.    Since e >/5, we 

have   I  Infi > /n a +1.     That  is, 

D(a,b)   < (in 0)'1(/n a +1), (2^) 

with (in/)" -2.078 . . .. Dixon established iu [6] that for every >0 

|D(a,b).Tin a| < (in a)^C (25) 

for almost all pairs (a,b) with u > a > b > 1, a.s u -»«, where 

T=12TT" in 2, (26) 

and we have T-O.S^Yö* • •,  By more elementary means, Dixon proved In [7] the 

weaker result that 

D(a,b) > |in a (27) 

for almost all pairs (a,b) with u > a > b > 1 as u -+ «.  In the following, we 

will show how Dixon's weaker result can be used to prove that the average 

computing time of the Euclidean algorithm is codominant with its maximum com- 

puting time of n(m-k+l).  Before proceeding to the detailed proof, however, I 

shall present an intuitive sketch. 

It is a well-known result (see [11], Section U.5.2, Excercise 10) that 

the proportion of pairs (a,b) with u > a > b > 1 for which gcd(a,b)=l approaches 
«2 

6TT  as u -> 00. We will first generalize this result to the pairs (a,b) with 

u > a > b > v as u - v ^ ». Next we set u = ßn-k+* and v = ^  and conclude> 

combining this result with Dixon's, that, for n-k large, at least half of the 

pairs (a,b) for which u > a > b > v satisfy both gcd(a,b)=l and D(a,b) > ^in a. 

For each pair satisfying these conditions and each c with ff'l< c  < ßk"^ we 

obtain a pair (i,b)-(ac ,bc) with gcd(i,b)=c, L(ä)-L(b)-n and L(c)=k.  If m > n 

than from each pair (ä,b) we obtain at leabt 

^V 13 
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lpm"n pairs (a,b) of the form (äq+6,B)for which L(a)-m and these also 

n-k 
satisfy L(b)=n, L(gcd(a,b))-k and D(ä,b) > ^in | " . The fiira (a,b) so 

obtained constitute at least .OOUp  of all pairs in Sra n k «nd tE(«,b) ^ 

n(m-k+l) for all (a,b), so t*(:n,n,k) ^ n(m-k+l) for n-k>h, say.  But it is 

trivial that t (m,n,k) > n(m^k+l) for n-k<h for any constant h, and so 
E 

t*(m,n,k)^n(m-k+l). 

Theorem 8. Letu and v be positive integers withu>v, let w* u-v, and 

let q be the number of pairs of integers (a,b) such thatu > a,b > v and 

gcd(a,b)--=l. Then \q/v2-6/^\<  (2in w + l+)/w. 

Proof. Let v.   be the number of integers a such that k|a and u> a >v. 

Then 

|v.-wAl<l. (28) 

and v^ is the number  of pairs  (a,b)   for which klgcd(a,b)  and u> a,  b >v.    By 

the principle  of inclusion and exclusion, 

q=Ik=l^(k)vk' 

where^A is  the Mobius  function.     By  (28), 

(      |v2.w
2/k2|<2w/k+l 

Multiplying (JO byy%:(k)/w    and  summing, we have,  by  (29), 

where H    is the harmonic  sum J.^l/k.    Using 

together with (5I)  yields 

lq/w2-TT2/6l<(2Hw+l)+^=w+1l/k
2. 

Ik 

(29) 

(50) 

(51) 

(32) 

(53) 
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But ) .  .,l/k <   )     x dx and H < /n w+1, which establishes the theorem L k=w+l ' / v w-      ' 

after substitution in (35). I 

Theorem 9« There is a positive integer h such that for n-k>h, there 

.    _ nr,  2n-2k+l  ,   / . \ ,   . J, .  n-k+^ .  ^ , ^ n-k are at least 0.02p      pairs (a,b) for which g   B>a>b>B  • 

gcd(a,b)"l, and D(a,b) > ^/n a. 

Proof. Set uH0a'fc*«|l v=p
n"k, w= u-v.  Since 6/T72 >0.6, lim 

W-* 00 

(2in w + l+)/w=0, and gcd(a,b)=gcd(b,a), by Theorem 8 there exists h. such that 

there are at least 0.5 w pairs (a,b) for which u> a > b > v and gcd(a,b)=l, 

for n-k > h.. By Dixon's theorem there is an h such that if n-k > h? then 

D(a,b) < ^in a for at most 0.05 pairs (a,b) withu> a, b > 1.  Hence if 

h!=max(h1 ,h?) and n-k > h there are at most (l/l+)w" pairs (a,b) for which 

u > a > b > v, gcd(a,b)=l and D(a,b) > ^in a. The theorem follows since 

• > (/B-l)Bn"k and (/ß-l)2/ß > (/2-l)2/2 > 0.08. I 

Theorem 10. There is a positive integer h such that for n-k> h, there 

m+n-k are at least 0.00U p pairs (a,b) such that a > b, L(a)=m, L(b)=n, 

n-k 
L(gcd(a,b))=k and D(a,b) > ifin p 

Proof. Choose an h for which Theorem 9 holds.  For every pair (a,bj 

k-1       k-i 
satisfying Theorem 9 and every integei satisfying ß   < c < ß ^ we obtain 

a pair (ac.bc) with ac >bc, L(ac)=L(bc)=n, L(gcd(ac,bc))"L(c)=k, and 

D(ac,bc)=D(a,b) > ^/n a > -gin p " . The mapping f((a,b),c) = (ac ,bc) thus 

defined is one-one so there are at least (0.020 '   )(/p-l)ß " >0.008p 

pairs (a,b) with a > b, L(a)=L(bj-n, L(gcd(a,b))=k and D(a,b) > |in pn"k.  If 

m=n this completes the proof, so assume m > n. For each pair (a,b) with 

L(a)=L(b)=n there are at least [(ßV""1)/*^ ^"VVP" > i^'1)^'^ 

ifß   pairs (aq+b,a) with L(aq+b)=m.  Since gcd(aq+b,a)=gcd(a,b) and 
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D(aq+b,a)-D(a>b)+l we obtain at least (C.00ee2n'k) (*em"n)-O.OOUpm+n"k 

pairs (aq+b,a) for which aq+b > a, L(aq+b)=in, L(a)-n, L(gcd(aq+b),a))=k 

and D(aq+b,a) > i/n 0n"k. | 

Theorem 11.  t (m,n,k)rün(m-k+l) . 
■ 

Proof. Let c.=min(l,^in g). By Theorems h  and 10, there exist h and 

c2 >0 scch that tE(a,b) > c2D(a,b) fD(a,b)+L(gcd(a,b))} > CgC^n-k) fc1(n-k)+k} 

2 -4-n k 
> c c0n(n-k) for n-k>h and for at least O.OOl+B'  ' elements of S   , .  Every 

1 ■ m,n,k     ' 

element of S     is of the form (ac.bc) with a< Bm"k+1, b< Bn"k+1 and c< 6k> lit a 11 « IV 

o u m+n-k+2     . •*. , 2       -2   .       . so S
m n  u 

has  at most   ß elements.     Hence,   t_(m,n,k^   >0.00l+   c,cnB    nfn-k^ 
III , 11 , K ^^ •— Id' 

-v n(n-k)for n-k>h. By Theorem 7, t (m,n,k) > n(m-n+l) > n ^ n(n-k) for n-k< h. 
■ 

Hence by Theorem 1, Part (h), t (m,n,k) >• n(n-k). By Theorem 7, tr,(m,n,k) > 

n(m-n+l) so by Theorem 1, Part (c), t (m,n,k) > n(n-k)+n(m-n+l)=n(m-k+l).  Hence 

by Theorem 6, t (m^.k)^ n(m-k+l) . 
E 




